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The ECG signal has been shown to contain relevant information for human identification. Even though results validate the
potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the
acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the
fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin.
The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction
and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual
steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time
normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have
revealed this to be a promising technique for biometric applications.

1. Introduction

As a biometric trait, electrocardiographic (ECG) signals
have very appealing characteristics as they provide intrinsic
liveliness detection and are strongly correlated to the subjects
arousal level [1]. Therefore, the application of ECG for
biometric purposes has been studied for long, both under
controlled and unrestrained scenarios [2–5]. Recent work
has shown the validity of the ECG signals for human
identification [6–8].

While results enhance the potential of these signals, user
acceptance may be limited by the data acquisition methods
and apparatus. State-of-the-art research has revealed that, for
biometric applications, a 1-lead setup suffices; nonetheless, a
chest-mounted sensor apparatus with pregelled electrodes is
typically used [9, 10]. Given this constraint, work in the field
has begun to focus on ECG acquired at the finger tips.

In [11] a nonmedical data, acquisition setup is explored,
which uses two electrodes connected at the subjects thumb
tips; data acquisitions and performance evaluation were done
for data collected within a group of 50 subjects. The authors
process the collected signals for P-QRS-T segmentation and

align the resulting waves to extract a mean wave. Classi-
fication results are obtained through the use of a distance
metric based on wavelet coefficients, computed by doing a
wavelet representation of the extracted mean waves.

We propose an ECG-based biometric system for human
identification, that recurs to a minimally intrusive 1-lead
setup for signal acquisition at the fingers. Our apparatus
uses Ag/AgCl electrodes without gel as interface with the
skin, further improving its usability. This work relies on time
domain processing of the ECG signal. Due to the inher-
ent heartbeat waveform variability, normalization must be
performed in order to obtain amplitude and time invariant
characteristics applicable for biometric purposes. The typical
steps consist of filtering, peak detection, heartbeat waveform
segmentation, and amplitude normalization; our approach
further improves on prior work by adding an additional step
of time normalization of the features.

The rest of the paper is organized as follows: Section 2
introduces an overview of the system and the proposed
signal acquisition apparatus; Section 3 details the signal
processing; Section 4 shows the experimental evaluation;
finally, Section 5 outlines the main results and conclusions.
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Figure 1: System architecture.
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Figure 2: Signal acquisition setup.

2. Data Acquisition

The system architecture is depicted in Figure 1. At the
hardware level, we have the 1-lead ECG sensor setup
connected to the signal acquisition unit, which transmits
the data through a Bluetooth wireless connection to a base
station (PC). At the base station, Matlab was used for data
acquisition, processing, and storage. A specific API, BioM-
Lab, was implemented to interface Matlab with the wireless
acquisition unit, handling the low-level communication and
signal acquisition tasks.

Signal processing and feature extraction blocks imple-
ment the signal analysis algorithms and feature extraction.
Classification is performed using the features provided by
the signal processing stage, and a database is used for data
persistence. Also, a simple set of functions was implemented
to handle the data storage and retrieval from the database.
The database contains the set of features collected from each
user during the enrollment.

2.1. Measurement Apparatus. Advances in biosignal sensors
and data acquisition have led to wireless, wearable, and
unobtrusive technologies for collecting ECG signals [12–
14]. Still, current systems are mostly targeted at wellness
and medical applications, requiring physical contact with
the subjects body at the trunk and/or legs level. Further-
more, conductive paste or pregelled electrodes are generally
required.

We propose a method and apparatus for ECG signal
acquisition, through a single lead setup at the fingers,
recurring to Ag/AgCl electrodes without gel. This setup

intends to bring the usability and acceptability of ECG-based
biometric systems to the level of other biometric traits, in
terms of signal acquisition [15, 16].

Our adjustable sensor mount and measurement appa-
ratus prototype is depicted in Figure 2. The rigid base, in
Figure 2(a), integrates three leads which, due to the under-
lying sensor design, correspond to the ground, positive, and
negative poles. The right hand thumb is used as negative
electrode, and the left hand index finger simultaneously
as the positive and ground electrodes, as illustrated in
Figure 2(b). Figure 2(c) illustrates the usage of the proposed
setup.

The base sensor is an ecgPLUX [17] active ECG triode,
and its specifications are listed in Table 1. The interface with
the skin is done through dry Ag/AgCl electrodes without
the application of any gel or conductive paste. For signal
acquisition and transmission, we used a Bluetooth wireless
bioPLUX [18] research biosignal acquisition unit. Table 2
describes the main specifications of this system.

2.2. Heartbeat Waveform Segmentation. The first step con-
sists of a band pass digital filtering of the signal, in the
[0.5;30] Hz passing band using a FIR filter. These frequencies
retain the necessary information for the proposed task while
eliminating both the baseline wander and high-frequency
noise. Figure 3 shows an example of the signals acquired at
the fingers using the proposed setup, where the existence of
the different complexes can be easily observed.

The QRS detection is performed following an adaptation
of the Englese and Zeelenberg algorithm [19], found to be
one of the more robust for this purpose [20]. The filtered
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Table 1: ecgPLUX sensor specifications.

Gain 1000

Filtering 0.05–30 Hz

CMRR 110 dB

Input impedance >1 MOhm

Table 2: bioPLUX research specifications.

Connectivity Bluetooth class II

Sampling rate 1000 Hz

Channels 8 An. + 1 Dig.

Size 84 × 53 × 18 mm

Weight 86 g

ECG signal is passed through a differentiator (1) and then by
the sequence of filters ((2) and (3))

y0[n] = x[n]� x[n− 1], (1)

y1[n] = y0[n]− y0[n− 4], (2)

y2[n] =
4∑

i=0

ci · y1[n− i], where ci = [1, 4, 6, 4, 1]. (3)

Figure 4 depicts the acquired signal, x[n] (in blue),
and the filtered signal, y2[n] (in red). The presence of an
R spike will induce a pronounced negative lobe and two
positive lobes with lower amplitude in y2[n]. The detection
algorithm is based on two thresholds masking the amplitude
of these positive and negative lobes. Instead of using the
ones proposed in [20], we calculated thresholds through
experimental analysis of the data.

The detection of “real” R spikes is concluded by comput-
ing the RR intervals based on neighbor R spike and using
an additional verification based on reference physiological
limits of these intervals [21]. We consider as valid R
peaks, the ones whose neighbor R peaks rhythm is within
the interval [minLatency, maxLatency], where minLatency
corresponds to 150 BPM and maxLatency to 30 BPM.

After computing the R peaks, we continue with the
segmentation of the ECG signal, identifying the Q and S
complexes. For the identification of these complexes we
continue to use y2[n].

Taking as reference the identified R peak, we analyze the
y2[n] signal within its neighborhood, determining the time
instants were it starts to be positive and comes down to
negative again, determining the intervals [iStartQ, iEndQ]
and [iStartS, iEndS]. Within these intervals, we take the
minimum value of x[n] as the Q and S complexes. The final
step for determining the heartbeat waveform is finding the P
and T complexes.

For the P complex, we look for the maximum value
of x[n] in the interval [leftMostIndex, iStartQ], where the
leftMostIndex was determined as the R peak time, subtracted
by the typical PQR latency interval upper bound. For the
determination of the T complex, we follow a similar process,
finding the maximum value of x[n] in the interval [iEndS,
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Figure 3: Sample of an ECG signal collected at the fingers (raw and
filtered).

rightMostIndex], where rightMostIndex was determined as
the R spike time plus the typical RST latency upper bound.

We consider as valid P-QRS-T complexes, sequences of
signals, where (a) P and T peak values are higher than zero
amplitude; (b) the P complex starts at least within 30 ms
before the Q complex.

3. Signal Processing and Feature Extraction

After heartbeat segmentation, we obtained a sequence of
the P-QRS-T complexes. Figure 5 illustrates the remaining
signal processing and feature extraction steps. The rational
behind ECG biometrics is that the heartbeat wave form
is different from subject to subject; nonetheless, heartbeat
cycles vary in length and amplitude. This may occur not only
between subjects but also for the same subject in different
moments of time, a reason for which our approach seeks to
obtain a latency and amplitude invariant set of features. We
proceed with a time and amplitude normalization, rescaling
each segment to the same number of points and amplitude.
Finally, we extract features from the normalized signals.

3.1. Time Normalization. Changes in the heart rate typically
result in the time compression/expansion of the heartbeat
waveform. The normalization of the segmented heartbeat
signal will ensure that the variability of the latencies of each
complex is reduced. Figure 6 illustrates one example of an
acquisition where the subject presented a computed heart
rate varying from 133 to 70 beats per minute (BPM), from
the beginning to the end of the acquisition, showing the
expansion/compression effect on the waveform caused by
different heart rate values.
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Figure 4: Peak detection using an adaptation of the Englese and Zeelenberg algorithm.
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Figure 5: Signal processing and feature extraction block diagram.
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Figure 6: Comparison of heartbeat waveforms at heart rates of 70 (low) and 133 (high) BPM. On the left we depict the raw signals, where,
a wave compression can be noticed for high heart rate. On the right, the time-normalized signals are presented.
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Figure 7: Example of unnormalized and normalized segmented signals.

Usually, the normalization of the segmented signals is
performed decimating the signal in between a fixed window
centered around the R peaks. In this work, we followed a
nonuniform decimation procedure which does not use fixed
time windows, but the ECG signal fiducial points themselves.
This procedure is divided in two parts: decimation of the
interval between the beginning of the P complex until the
R peak; decimation of the interval between the R peak and
the end of the T complex.

The devised algorithm samples these intervals so that
each pattern has the same number of samples regardless of
the expansion/compression of the heartbeat waveforms. The
resulting normalized signals will all have the same number
of samples and the R peak at the same time instant. In this
study, we use 300 samples for each single heartbeat.

3.2. Amplitude Normalization. The ECG signal processing is
only concluded with the amplitude normalization step. We
take the segmented time-normalized signals and normalize
them using as normalization factor the average of the
amplitude of the obtained R peaks. This value normalizes
the intrasubject amplitude difference, reducing differences in
amplitude that can happen during one acquisition.

Figure 7 illustrates an example before and after time and
amplitude normalization, for signals obtained during one
acquisition.

3.3. Feature Extraction. In the literature, there are several
approaches for ECG feature extraction: fiducial [3–5, 8] and
nonfiducial [6, 11]. Fiducial methods use points of interest
within a single heartbeat waveform, such as local maxima
or minima; these points are used as reference to allow
the definition of latency times. Several methods exist that
extract different time and amplitude features, using these
reference points. Nonfiducial techniques aim at extracting
discriminative information from the ECG waveform without
having to localize fiducial points.

In this work, we compute a single mean heartbeat,
averaging all the normalized signals. The features are directly
the amplitudes of this waveform. This approach contrasts
with previous works [6, 8], where the mean wave was
computed for every 10 consecutive segmented heartbeat
waveforms, and were fiducial points where extracted. The
templates were composed by the concatenation of the
features extracted from each mean wave, therefore increasing
the spacial complexity.

Nevertheless, our approach can be considered fiducial,
since the normalized signals are obtained based on a se-
gmentation that depends on the location of the P-QRS-T
complexes.

4. Experimental Results

For the evaluation of the system, we populated a database
with acquisitions from 16 subjects. For each user, we
collected 2 minutes of ECG signals at the fingers using
the proposed apparatus. Classification was performed using
a minimum Euclidean distance criterion between the test
templates and the enrollment templates (1-NN classifier).

The systematic evaluation of the system is based on cross
validation, using 30 runs of enrollment/test sequence for
each user. For the enrolment, we randomly select 30 single
heartbeats, averaging them to form the enrolment template;
for the test, we also select 30 single heartbeats (different from
the previous), averaging them to construct test templates.
Results are computed from the average of the 30 runs.

4.1. Identification. Figure 8, presents the distance matrices
obtained with the proposed methodology between enrol-
ment and test templates. The element i, j of the matrix
represents the distance from the subject i to the subject j,
according to the selected set of features. In the presented
color scheme, blue is attributed to values close to zero,
representing subjects with very similar features, and red is
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Figure 8: Distance matrix between enrolment and test templates.
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Figure 9: Confusion matrix.

attributed to values close to one, representing subjects very
dissimilar.

In the matrix of Figure 8 we see that there are very
few entries with blue color, except in the diagonal, which
represents the distance from the subject to himself. This char-
acteristic is important in order to have a high true positive
rate (TPR). Following a minimum distance criterion between
the test patterns and the enrollment templates, we obtain as
decision the matrix found in Figure 9, corresponding to an
identification accuracy of 94,3%.

4.2. Authentication. In an authentication scenario, an indi-
vidual is accepted if the euclidean distance between the
enrolment template and the test template is inferior to a given
threshold (th). Figure 10 summarizes the performance of
the proposed system in an authentication scenario, showing
the False Acceptance Rate (FAR) versus False Rejection Rate
(FRR) and the ROC curves. The obtained equal error rate
(EER) is 13,0%.

To obtain further improvements on the authentication
performance, we evaluated a user-tuned threshold selection
method. Using this approach, in each test run, the FAR and
FRR are computed per subject, and, from these, the indi-
vidual EER and optimal decision threshold are determined.
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Figure 10: FAR-FRR and ROC curves.

Over all runs, the average EER over all users was improved to
10,1% using this approach.

4.3. Discussion. The obtained results outperform state-of-
the-art results on identifications based on ECG acquired
on fingers. In [11], a classification accuracy of 89% over
a population of 50 subjects during three data-recording
sessions on different days is reported. One of the limitations
of our study is the database size, composed by 16 subjects,
and also by the fact that only one data-recording session
was performed. The testing variability was accomplished
through the use of cross-validation, with random sampling
of enrollment and test heartbeats on each run.

Compared with state-of-the-art results on ECG signals
acquired on chest (lead V2), using the same type of measure-
ment apparatus, 1-lead pregelled electrodes, our results are
slightly worst, as reported classification results reach 100%
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accuracy on identification. Such a difference could be related
to the quality of the acquired signal, as the signal acquired
from the fingers has significantly lower signal-to-noise ratio.
This can be caused by factors as the lower conductance on
the electrode-skin interface, higher sensitivity to external
electromagnetic interference, and different signal processing
methodologies.

Future work will be focused on improving the signal-
to-noise ratio of our signals. Our next steps will target
on improving directly the acquisition apparatus, through
the development of a dedicated sensor with custom spec-
ifications. Moreover additional research will be performed
regarding signal processing of the acquired signal, seeking
further improvements in terms of noise and potential
outliers removal from the segmented heartbeats.

5. Conclusions

This paper describes a methodology and apparatus for
human biometric identification and authentication based on
1-lead ECG signals collected at the fingers. Our goal was to
provide the building blocks for a nonintrusive ECG-based
biometric system.

We have devised a measurement apparatus that only
requires slight contact with the subject hands without the
need of pregelled electrodes or conductive paste, providing
a signal acquisition setup similar to the ones already used by
other, largely accepted, biometric traits.

Experimental evaluation has been performed on a group
of 16 subjects, from which the signals were collected
at the fingers, and promising results were revealed. The
proposed approach allowed us to obtain a 94,3% recognition
rate in subject identification and a 13,0% EER in subject
authentication. By applying a user-tuned threshold selection
method, authentication results were further improved to a
10,1% EER.

Future work will focus on extending the subject base and
experimenting alternative feature analysis and classification
methods, targeting a continuous real-time biometric system.
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